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Abstract. By using the invariant method we find one-parameter squeezed Gaussian states for
both time-independent and time-dependent oscillators. The squeezing parameter is expressed in
terms of the energy expectation value for the time-independent case and represents the degree
of mixing of positive and negative frequency solutions for the time-dependent case. Aminimum
uncertainty proposalis advanced to select, uniquely, vacuum states at each moment of time. We
show that the Gaussian states with minimum uncertainty coincide with the true vacuum state for
the time-independent oscillator and the Bunch–Davies vacuum for a massive scalar field in a de
Sitter spacetime.

1. Introduction

Harmonic oscillators have played many important roles in quantum physics, partly because
they are exactly solvable quantum mechanically and partly because any system around an
equilibrium can be approximated as a harmonic oscillator system. As a non-stationary
system, a time-dependent quantum harmonic oscillator can also be exactly solved. One
encounters typical time-dependent harmonic oscillators in a system of harmonic oscillators
interacting with an environment or evolving in an expanding universe. In the former
case, the harmonic oscillator system depends on time through parametric couplings to the
environment. In the latter case, for instance, a massive scalar field, as a collection of harmonic
oscillators when appropriately decomposed into modes, gains time dependence from a time-
dependent spacetime background. As a method to find the exact quantum states of a time-
dependent harmonic oscillator, Lewis and Riesenfeld [1, 2] introduced an invariant, quadratic
in momentum and position, which satisfies the quantum Liouville–Neumann equation. The
exact quantum states are given by the eigenstates of this invariant up to some time-dependent
phase factors. Since then there have been many variants and applications of the invariants and
researches on the nature of the squeezed states of the vacuum states [3–29].

In this paper, we first circumvent technically the task of solving a time-dependent nonlinear
auxiliary equation in terms of which the quadratic invariant was expressed by Lewis and
Riesenfeld [1, 2], by finding a pair of first-order invariants in terms of a complex solution to
the classical equation and showing that the amplitude of the complex solution satisfies the
auxiliary equation. By using the invariant method we find one-parameter squeezed Gaussian
states which are symmetric about the origin. The squeezing parameter is determined by the
energy expectation value for a time-independent oscillator and represents the degree of mixing
of positive and negative frequency solutions for a time-dependent oscillator. Second, we
propose theminimum uncertaintyas a rule to select uniquely the vacuum states for either
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time-independent and time-dependent oscillators. The Gaussian states with the minimum
uncertainty have also the minimum energy expectation value at every moment of time. The
Gaussian states with minimum uncertainty coincide with the true vacuum state of time-
independent oscillator and with the Bunch-Davies vacuum state for a minimal massive scalar
field in a de Sitter spacetime.

The organization of this paper is as follows. In section 2 we introduce a pair of first-
order invariants equivalent to the original quadratic invariant by Lewis and Riesenfeld and find
one-parameter squeezed Gaussian states. In section 3 we study the minimum uncertainty as a
selection rule for vacuum states for both a time-independent oscillator and a time-dependent
oscillator.

2. One-parameter squeezed Gaussian states

First, we show the equivalence between the quadratic invariant introduced by Lewis and
Riesenfeld [1, 2] and a pair of first-order invariants. Lewis and Riesenfeld let us solve the
time-dependent Schrödinger equation in the Schrödinger picture (¯h = 1):

i
∂

∂t
9(q, t) = Ĥ (t)9(q, t) (1)

for a time-dependent harmonic oscillator of the form

Ĥ = 1

2m0
p̂2 +

m0ω
2(t)

2
q̂2. (2)

Lewis and Riesenfeld introduced the invariant operator quadratic in position and momentum

Î (t) = 1

2m0

[
(ξ p̂ − ξ̇ q̂)2 +

1

ξ2
q̂2

]
(3)

that satisfies the quantum Liouville–Neumann equation

i
∂

∂t
Î + [Î , Ĥ ] = 0. (4)

Thenξ satisfies the auxiliary equation

ξ̈ + ω2(t)ξ = 1

ξ3
. (5)

Instead of the quadratic invariant (3), let us consider a pair of the first-order invariants [29]

Â(t) = i(u∗(t)p̂ −m0u̇
∗(t)q̂)

Â†(t) = −i(u(t)p̂ −m0u̇(t)q̂).
(6)

These operators satisfy the quantum Liouville–Neumann equation

i
∂

∂t
Â(t) + [Â(t), Ĥ (t)] = 0

i
∂

∂t
Â†(t) + [Â†(t), Ĥ (t)] = 0

(7)

whenu is a complex solution to the classical equation of motion

ü(t) + ω2(t)u(t) = 0. (8)

Imposing the commutation relation

[Â(t), Â†(t)] = 1 (9)
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as the annihilation and creation operators of a Fock space, is equivalent to requiring the
Wronskian condition

m0(u̇
∗(t)u(t)− u∗(t)u̇(t)) = i. (10)

To show the equivalence between the classical equation of motion (8) and the auxiliary
equation (5), we write the complex solution in a polar form

u(t) = ξ(t)√
2m0

e−iθ(t). (11)

Then equation (10) becomes

ξ2θ̇ = 1 (12)

and equation (8) equals to the auxiliary equation (5). Furthermore, one can rewrite the operators
(6) as

Â(t) = e−iθ

√
2m0

[
m0

ξ
q̂ + i(ξ p̂ −m0ξ̇ q̂)

]
Â†(t) = eiθ

√
2m0

[
m0

ξ
q̂ − i(ξ p̂ −m0ξ̇ q̂)

] (13)

to show that

Î (t) = Â†(t)Â(t) + 1
2 . (14)

The eigenstates of the invariant are the number states

|n, t〉 = 1√
n!
(Â†(t))n|0, t〉 (15)

where the vacuum state is defined by

Â(t)|0, t〉 = 0. (16)

Exact quantum states of the time-dependent harmonic oscillator are given explicitly by

|9(t)〉 =
∑
n

cn exp

(
i
∫
〈n, t |i ∂

∂t
− Ĥ (t)|n, t〉

)
|n, t〉. (17)

Second, we find one-parameter Gaussian states. For this purpose, we choose a specific
positive frequency solutionu0 to equation (8) such that

Im

(
u̇0(t)

u0(t)

)
< 0 (18)

and the Wronskian (10) is satisfied. We further require thatu0 give the minimum uncertainty,
which will be discussed in detail, in the next section. Then any linear combination

uν(t) = µu(t) + ν∗u∗(t) (19)

also satisfies the Wronskian condition (10) provided that

|µ|2 − |ν|2 = 1. (20)

We now make use of the complex solution (19) to define

Âν(t) = i(u∗ν(t)p̂ −m0u̇
∗
ν(t)q̂)

Â†
ν(t) = −i(uν(t)p̂ −m0u̇ν(t)q̂).

(21)

Then the one-parameter Gaussian states can be found from the definition

Âν(t)|0, t〉ν = 0 (22)
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whose coordinate representation are given by

9ν(q, t) =
(

1

2πu∗ν(t)uν(t)

)1/4

exp

[
i
m0u̇

∗
ν(t)

2u∗ν(t)
q2

]
. (23)

Equation (20) can be parametrized in terms squeezing parameters [31]

µ ≡ coshr ν ≡ eiδ sinhr. (24)

It follows readily that

Âν(t) = µ̃Â(t) + ν̃Â†(t)

Â†
ν(t) = ν̃∗Â(t) + µ̃∗Â†(t)

(25)

whereµ̃ = µ, andν̃ = ei(δ+π) sinhr = −ν. This can be rewritten as a unitary transformation

Âν(t) = Ŝ(z)Â(t)Ŝ†(z) (26)

where

Ŝ(z) = exp[12(z
∗Â2

0 − zÂ†2
0 )] (z = rei(δ+π)) (27)

is a squeeze operator [31]. Thus, one sees that9ν are the squeezed Gaussian states of9ν=0.
It should be noted that

ξ2(t) = 2m0u
∗
ν(t)uν(t) (28)

indeed satisfies the auxiliary equation (5).

3. Selection rule for vacuum states

In this section we study a selection rule for the vacuum states. It is shown that the minimum
uncertainty selects uniquely the vacuum states among the one-parameter Gaussian states in
section 2. For the case of the time-independent harmonic oscillator the minimum uncertainty
state is the true vacuum state with the minimum energy expectation value. For the case of
the time-dependent harmonic oscillator the minimum state coincides with the Bunch–Davies
vacuum state playing a particular role in quantum field theory in a curved spacetime. In this
section we show that the one-parameter Gaussian states in section 2 are parametrized by the
energy expectation value and are the squeezed states of the true vacuum state. For the time-
dependent case we prove an inequality between the energy expectation value of a squeezed
Gaussian state and that of the minimal squeezed Gaussian state.

3.1. Time-independent case: true vacuum

For the case of a time-independent harmonic oscillator we can show that the squeezing
parameter of the one-parameter Gaussian states is nothing but the energy expectation value.
The energy expectation value of the Hamiltonian with respect to the Gaussian state (23) is
given by

ν〈0, t |Ĥ |0, t〉ν = 1

4

(
ξ̇2 + ω2ξ2 +

1

ξ2

)
≡ ε. (29)

Equation (5) can be integrated to yield equation (29). We solve the integral equation (29) to
obtain

ξ2 = 2ε

ω2
+

2ε

ω2

√
1− ω2

4ε2
cos(2ωt). (30)
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By solving (12) we get

θ = ωt. (31)

We now compare theξ2 of equation (30) with that obtained by directly solving equation (8).
We choose the following specific solution to equation (8)

u0(t) = 1√
2m0ω

e−iωt (32)

and confine our attention to realµ andν. It then follows that

ξ2 = 1

ω
(µ2 + ν2 + 2µν cos(2ωt)). (33)

By comparing equations (30) and (33) we find the squeezing parameter

µ =
√
ε

ω
+

1

2

ν =
√
ε

ω
− 1

2
.

(34)

Thus we were able to express the squeezing parameters in terms of the energy expectation
value.

We now look for the Gaussian state with the minimum uncertainty. The one-parameter
Gaussian states have the uncertainty

(1p)ν(1q)ν = 1
2(|µ|2 + |ν|2). (35)

The minimal uncertainty state is obtained byµ = 1 andν = 0 and the uncertainty is12. This
has also the minimum energy

εmin. = ω

2
. (36)

So the specific solution (32) corresponds to the minimum energy and the corresponding
Gaussian state is the true vacuum state of the harmonic oscillator. Therefore, the Gaussian
states we have found in section 2 are the one-parameter squeezed states of the true vacuum
state whose parameter is the energy expectation value.

3.2. Time-dependent case: Bunch–Davies vacuum

We now turn to the time-dependent case. In general, one can show the following inequality of
the uncertainty relations with respect to9ν and90

(1p)ν(1q)ν = m0(u̇
∗
ν(t)u̇ν(t)u

∗
ν(t)uν(t))

1/2

> m0(µ− |ν|)2(u̇∗ν=0(t)u̇ν=0(t)u
∗
ν=0(t)uν=0(t))

1/2

> m0(u̇
∗
ν=0(t)u̇ν=0(t)u

∗
ν=0(t)uν=0(t))

1/2

= (1p)ν=0(1q)ν=0. (37)

The equality of equation (37) holds whenµ = 1 andν = 0. The energy expectation value
similarly satisfies the inequality

〈9ν |Ĥ |9ν〉 = m0(u̇
∗
ν(t)u̇ν(t) + ω2(t)u∗ν(t)uν(t))

> (µ− |ν|)2m0(u̇
∗
ν=0(t)u̇ν=0(t) + ω2(t)u∗ν=0(t)uν=0(t))

> m0(u̇
∗
ν=0(t)u̇ν=0(t) + ω2(t)u∗ν=0(t)uν=0(t))

= 〈9ν=0|Ĥ |9ν=0〉 (38)
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where the equality holds whenµ = 1 andν = 0. What equations (38) and (37) imply is that
once we choose the Gaussian state with the minimum uncertainty and energy at each moment,
all its squeezed Gaussian states have higher uncertainty and energy. However, it should be
noted that the energy expectation value for a time-dependent quantum system does not have
an absolute physical meaning since it is not conserved. On the other hand, the quantum
uncertainty still has some physical meaning even for the time-dependent quantum system
in that it characterizes the very nature of quantum states. For this reason, we put forth the
minimum uncertaintyas the selection rule for the vacuum state for a time-dependent system.
From equations (38) and (37), the vacuum state with the minimum uncertainty also has the
minimum energy at every moment.

In order to show that the vacuum state with the minimum uncertainty indeed coincides
with the well known vacuum states we consider a minimal massive scalar field in the de Sitter
spacetime. The de Sitter spacetime has the metric

ds2 = −dt2 + e2H0 dx2 (39)

whereH0 is an expansion rate of the universe. When the massive scalar field is decomposed
into Fourier modes, it has the Hamiltonian

H =
∑
k,(±)

e−3H0t

2
(π

(±)
k )2 +

e3H0t

2
(m2 + k2e−2H0t )(φ

(±)
k )2 (40)

whereu(±)k denote the cosine- and sine-modes, respectively. Thus, the massive scalar field
system is equivalent to infinitely many harmonic oscillators both with a time-dependent mass
and with time-dependent frequencies. Though the mass depends on time, all the previous
results are valid only with the following modification

Â
(±)
k = i(u(±)∗k (t)π̂

(±)
k − e3H0t u̇

(±)∗
k (t)φ̂

(±)∗
k ),

Â
(±)†
k = −i(u(±)k (t)π̂

(±)
k − e3H0t u̇

(±)
k (t)φ̂

(±)
k )

(41)

whereu(±)k (t) satisfy the equations

ü
(±)
k (t) + 3H0u

(±)
k (t) + (m2 + k2e−2H0t )u

(±)
k (t) = 0. (42)

It can be shown [30] that the specific solution in the Hankel function of the second kind

u
(±)
k (t) =

(
π

4H0

)1/2

e−
3
2H0tH (2)

χ (z) (43)

where

χ =
(

9

4
− m2

H 2
0

)1/2

z = k

H0
e−H0t (44)

gives rise to the Gaussian state with the minimum uncertainty at each moment. Moreover, the
Gaussian state has the uncertainty1

2 at earlier timest →−∞. The vacuum state of the scalar
field

|0, t〉ν=0 =
∏
k,±
|0(±)k 〉ν=0 (45)

is indeed the Bunch–Davies vacuum state [32]. The general solution of the form (19) mixes
the positive frequency solutionu(±)k with the negative frequency solutionu(±)∗k .
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4. Conclusion

In this paper we found the one-parameter squeezed Gaussian states for a time-dependent
harmonic oscillator. It was found that the squeezing parameters can be expressed in terms
of the energy expectation value and represents the degree of mixing of positive and negative
frequency solutions. Theminimum uncertaintyis advanced as a selection rule for the vacuum
state. We have illustrated the selection rule for the vacuum state by studying a time-independent
harmonic oscillator and a minimal massive scalar field in a de Sitter spacetime. It was shown
that the Gaussian states with the minimum uncertainty are the true vacuum state with the
minimum energy for the time-independent harmonic oscillator and the Bunch–Davies vacuum
state for the massive scalar field in the de Sitter spacetime.
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